Learning Objectives

• Discuss definitions and features of CGM and insulin pump reports
• Utilize a systematic approach to review CGM data
• Analyze CGM and insulin reports to make medication changes
Quick Review:
How a Pump Delivers Insulin
Available Pumps in U.S.

- Omnipod (Insulet)
- t:slim X2 with G6 CGM (Tandem/Dexcom)
- 670G with Guardian 3 (Medtronic)
- VGo
Continuous Glucose Monitoring

Dexcom G6

Medtronic Guardian Connect

Freestyle Libre Flash

Senseonics Eversense-Implantable
Insulin Pump Settings

Basal
- Maximum Basal Rate: 2.50 U/Hr

Basal 1 (active)
- 24-Hour Total: 28.100 U
- **Carbohydrate Ratio (g/U)**
 - Time: 00:00, Ratio: 1.00
 - Time: 02:30, Ratio: 1.10
 - Time: 08:00, Ratio: 1.15
 - Time: 13:00, Ratio: 1.30
 - Time: 22:00, Ratio: 1.05

- **Insulin Sensitivity (mg/dL per U)**
 - Time: 00:00, Sensitivity: 15.0

- **Blood Glucose Target (mg/dL)**
 - Time: 00:00, Low: 100, High: 120

- **Total daily dose (per day):** 49 units
- **Bolus amount (per day):** 21U (43%)
- **Auto Basal / Basal amount (per day):** 28U (57%)

- **Meal (per day):** 2.9
 - Carbs entered (per day): 190 ± 42 g
Pump Automation

• Suspend insulin on low

• Predictive suspend

• Auto adjust basal insulin

• Auto correction doses
Predictive Suspend
Control IQ
Control-IQ: How It Works

- Automatic basal attenuation (uses programmed rates)
 - Increases basals if predicted >160 mg/dL
 - Decreases basals if predicted <112.5 mg/dL
 - Suspends if predicted <70 mg/dL

- Automatic correction doses
 - Up to 1 every hour
 - Calculated at 60% of programmed correction factor (target of 110)

- User must still give boluses for CHO (and additional correction doses)

- Active insulin time 5 hours
Control-IQ: Sleep and Exercise

Sleep “Activity” schedule
- Target range to 112.5-120 mg/dL
- No automatic boluses

Exercise “Activity” schedule
- Temporary target range: 140-160 mg/dL
- Use like temp basal

Courtesy: Laurel H. Messer, RN, MPH, CDE, Barbara Davis Center for Diabetes University of Colorado School of Medicine.
Control-IQ vs Medtronic 670G rtCGM

<table>
<thead>
<tr>
<th></th>
<th>MiniMed 670G</th>
<th>Control-IQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate</td>
<td>• Automatic basal delivery based on TDD</td>
<td>• Automated basal delivery based on basal rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Delivers auto-correction dose 1/h</td>
</tr>
<tr>
<td>Adjust</td>
<td>• Can modify:</td>
<td>• Can modify:</td>
</tr>
<tr>
<td></td>
<td>- I:C ratios, insulin action time</td>
<td>- Basal rates, I:C ratios, sensitivities</td>
</tr>
<tr>
<td>Revert</td>
<td>Will revert to OL:</td>
<td>Will revert to OL:</td>
</tr>
<tr>
<td></td>
<td>• Prolonged hyperglycemia, max/min insulin, no CGM data, sensor integrity</td>
<td>• if loss of CGM data</td>
</tr>
<tr>
<td>Educate</td>
<td>• Follow system prompts to stay in Auto mode (entering BGs)</td>
<td>• Set sleep schedule</td>
</tr>
<tr>
<td></td>
<td>• Increase I:C ratios to make more aggressive</td>
<td>• Do not override boluses: extra insulin present from auto-corrections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Read bolus prompts carefully</td>
</tr>
<tr>
<td>Sensor/Share</td>
<td>Guardian Sensor 3:</td>
<td>Dexcom G6 sensor:</td>
</tr>
<tr>
<td></td>
<td>• 2-4 calibrations/d</td>
<td>• Factory calibrated</td>
</tr>
<tr>
<td></td>
<td>• No remote monitoring</td>
<td>• Phone view and remote monitoring</td>
</tr>
</tbody>
</table>

Temp Basals

- Temporarily increase or decrease basal settings
- A great option for high stress, sick days, steroid bursts, exercise
- Start the temp basal 1-2 hours prior to exercise or activity requiring the change
- Depending on pump report view, you may not see the temp basals
- Hybrid-closed loop
 - Temp target option (Medtronic), 150mg/dL
 - Exercise mode (Tandem), 140-160mg/dL
Bolus Pattern Management

• Does glucose go low after a correction dose?
 - May need a higher sensitivity
 - Ex. 1:60 instead of 1:50

• Does glucose remain high after a correction dose?
 - May need a lower sensitivity
 - Ex. 1:50 instead of 1:60

• Does the person spike high after eating?
 - Is the person bolusing BEFORE the meal
 - Counting carbs correctly?
 - May need a more intensive carb ratio
 - Ex. 1:8 instead of 1:10

• Does the person go low after eating?
 - Counting carbs correctly?
 - May need a less intensive carb ratio
 - Ex. 1:10 instead of 1:8
Data Management Systems

<table>
<thead>
<tr>
<th>System</th>
<th>Website</th>
<th>What it Downloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloooko</td>
<td>www.glooko.com</td>
<td>Omnipod, Dexcom, Libre, Eversense, many glucose meters, Inpen</td>
</tr>
<tr>
<td>Dexcom Clarity</td>
<td>https://clarity.dexcom.com</td>
<td>Dexcom, Inpen</td>
</tr>
<tr>
<td>LibreView</td>
<td>www.libreview.com</td>
<td>Freestyle Libre</td>
</tr>
<tr>
<td>T:Connect</td>
<td>https://tconnecthcp.tandemdiabetes.com/hcp_account</td>
<td>Tandem insulin pumps with dexcom data</td>
</tr>
<tr>
<td>Carelink</td>
<td>https://carelink.medtronic.com/</td>
<td>Medtronic insulin pumps, Guardian Connect</td>
</tr>
<tr>
<td>Tidepool</td>
<td>https://tidepool.org/</td>
<td>All insulin pumps, Libre, Dexcom, Medtronic, many glucose meters, InPen</td>
</tr>
<tr>
<td>Eversense Data Management</td>
<td>https://us.eversensedms.com/</td>
<td>Eversense</td>
</tr>
</tbody>
</table>
Smart Pen Integration with CGM Data

https://www.companionmedical.com/InPen
Interpreting Reports
Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

https://doi.org/10.2337/dc19-0028
Reviewing the Data: Key Metrics

<table>
<thead>
<tr>
<th>CGM Metric</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized visualization of data</td>
<td>Ambulatory glucose profile (AGP)</td>
</tr>
<tr>
<td>Mean glucose</td>
<td>Calculated</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td><70mg/dL</td>
</tr>
<tr>
<td>Very low/clinically significant hypoglycemia</td>
<td><54mg/dL</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>>180mg/dL</td>
</tr>
<tr>
<td>Very high/clinical significant hyperglycemia</td>
<td>>250mg/dL</td>
</tr>
<tr>
<td>Time in range</td>
<td>70-180mg/dL</td>
</tr>
<tr>
<td>Glycemic variability (coefficient of variation)</td>
<td>Standard deviation/mean, stable <36%</td>
</tr>
<tr>
<td>Glucose management indicator (GMI)</td>
<td>CGM version of estimated A1C</td>
</tr>
<tr>
<td>Recommend data sufficiency</td>
<td>70% sensor use over 14 days</td>
</tr>
</tbody>
</table>

Problem Solving

What Does All That Data Mean?
Setting the Target Range

Settings

Glucose Time/Target Range (mg/dL)

Changes that you make here apply throughout Dexcom CLARITY, but they won’t affect any settings on your CGM device.

<table>
<thead>
<tr>
<th>Night</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Day
- Start Time: 6:00 AM
- End Time: 10:00 PM
- Low Threshold: 70 mg/dL
- High Threshold: 180 mg/dL

Night
- Start Time: 10:00 PM
- End Time: 6:00 AM
- Low Threshold: 80 mg/dL
- High Threshold: 150 mg/dL
At least 42 factors affect glucose!

<table>
<thead>
<tr>
<th>Food</th>
<th>Biological</th>
<th>Behavioral & Decision Making</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑↑ 3. Fat</td>
<td>↑ 22. Recent hypoglycemia</td>
<td>↑ 41. Decision-making biases</td>
</tr>
<tr>
<td>↑↑ 4. Protein</td>
<td>↑ 23. During-sleep blood sugars</td>
<td>↑ 42. Family relationships and social pressures</td>
</tr>
<tr>
<td>↑↑ 5. Caffeine</td>
<td>↑ 24. Dawn phenomenon</td>
<td></td>
</tr>
<tr>
<td>↓ 6. Alcohol</td>
<td>↑ 25. Infusion set issues</td>
<td></td>
</tr>
<tr>
<td>↑↑ 7. Meal timing</td>
<td>↑ 26. Scar tissue and lipodystrophy</td>
<td></td>
</tr>
<tr>
<td>↑↑ 8. Dehydration</td>
<td>↓ 27. Intramuscular insulin delivery</td>
<td></td>
</tr>
<tr>
<td>? 9. Personal microbiome</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medication</th>
<th>Environmental</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ 10. Medication dose</td>
<td>↑ 34. Expired insulin</td>
<td></td>
</tr>
<tr>
<td>↑↑ 11. Medication timing</td>
<td>↑ 35. Inaccurate BG reading</td>
<td></td>
</tr>
<tr>
<td>↓ 12. Medication interactions</td>
<td>↑ 36. Outside temperature</td>
<td></td>
</tr>
<tr>
<td>↑↑ 13. Steroid administration</td>
<td>↑ 37. Sunburn</td>
<td></td>
</tr>
<tr>
<td>↑↑ 14. Niacin (Vitamin B3)</td>
<td>↑ 38. Altitude</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ 15. Light exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑↑ 16. High-intensity and moderate exercise</td>
<td>↑ 34. Expired insulin</td>
<td></td>
</tr>
<tr>
<td>↓ 17. Level of fitness/training</td>
<td>↑ 35. Inaccurate BG reading</td>
<td></td>
</tr>
<tr>
<td>↑↑ 18. Time of day</td>
<td>↑ 36. Outside temperature</td>
<td></td>
</tr>
<tr>
<td>↓ 19. Food and insulin timing</td>
<td>↑ 37. Sunburn</td>
<td></td>
</tr>
</tbody>
</table>
CGM: Guide to Data Interpretation

1) Gather Information
 • Key metrics, AGP, % time in range, % hypoglycemia, % hyperglycemia, coefficient of variation
 • DM medications, daily routine
 • Data gaps, data sufficiency?

2) Safety
 • Hypoglycemia-possible causes and solutions?

3) Focus on the positive
 • Highest day time in range
 • What worked well? (ex. Pre-bolusing, adequate sleep)

4) Focus on areas for improvement
 • Hyperglycemia-possible causes and solution?
It’s All About the AGP

Glucose Statistics:
- Avg Glucose: 189 mg/dL
- Glucose Exposure: 189

Glucose Ranges:
- Very Low: 0.0%, < 54 mg/dL
- Low: 0.8%, 54 - 70 mg/dL
- In Target Range: 50.1%, 70 - 180 mg/dL
- High: 49.0%, > 180 mg/dL
- Very High: 18.5%, > 250 mg/dL

Glucose Variability:
- Coefficient of Variation: 36.1%
- SD mg/dL: 68

Data Sufficiency:
- % Time CGM Active: 97.7%

Graph:
- Curves/peaks represent glucose frequency distributions by time regardless of date.

Time Periods:
- 12AM, 2AM, 4AM, 6AM, 8AM, 10AM, 12PM, 2PM, 4PM, 6PM, 8PM, 10PM, 12AM
Snapshot: Hypoglycemia

Glucose
- **Average Glucose**: 259 mg/dL
- **% above target**: 74%
- **% in target**: 23%
- **% below target**: 3%

Low Glucose Events
- **Total**: 8 events
- **Average duration**: 64 minutes

Sensor Usage
- **Sensor data captured**: 50%
- **Daily scans**: 2

Insulin

- **Daily Carbs**:
- **Rapid-Acting Insulin**: 0 units/day
- **Long-Acting Insulin**: 0 units/day
- **Total Daily Insulin**: 0 units/day

Comments
- Gaps found in the insulin data. 21 days in this reporting period have no recorded insulin events.

Additional comments or notes on the data.
Caution with Data Gaps

Daily Log
February 19, 2019 - May 19, 2019 (90 Days)

TUE Feb 19

Glucose mg/dL

349 210 222 43 47

WED Feb 20

Glucose mg/dL

312 220 227

THU Feb 21

Glucose mg/dL

214 40 48 40 46
Comparing Different Days

Focus on the Positive-Best Day
Cases
Patient Case 1

- 55 year female with type 1 diabetes x 30 years
- Hypothyroid, Post-bariatric surgery, HTN
- BMI=29
- A1C=7.2%
- Wears Medtronic 670G
Pump Settings/Statistics

Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Mode (per week)</td>
<td>92% (6d 10h)</td>
</tr>
<tr>
<td>Manual Mode (per week)</td>
<td>8% (14h)</td>
</tr>
<tr>
<td>Sensor Wear (per week)</td>
<td>89% (6d 06h)</td>
</tr>
<tr>
<td>Average SG ± SD</td>
<td>156 ± 58 mg/dL</td>
</tr>
<tr>
<td>Average BG</td>
<td>171 ± 82 mg/dL</td>
</tr>
<tr>
<td>BG / Calibration (per day)</td>
<td>11.6 / 4.3</td>
</tr>
<tr>
<td>Total daily dose (per day)</td>
<td>31 units</td>
</tr>
<tr>
<td>Bolus amount (per day)</td>
<td>16U (52%)</td>
</tr>
<tr>
<td>Auto Basal / Basal amount (per day)</td>
<td>15U (48%)</td>
</tr>
<tr>
<td>Set Change</td>
<td>Every 3.3 days</td>
</tr>
<tr>
<td>Reservoir Change</td>
<td>Every 3.3 days</td>
</tr>
<tr>
<td>Meal (per day)</td>
<td>6.9</td>
</tr>
<tr>
<td>Carbs entered (per day)</td>
<td>110 ± 36 g</td>
</tr>
<tr>
<td>Active Insulin time</td>
<td>3:00 hrs</td>
</tr>
</tbody>
</table>

Basal 1 (active)

- **24-Hour Total**: 19,800 U
- **Time** | **U/Hr**
 - 00:00 | 0.825

<table>
<thead>
<tr>
<th>Carbohydrate Ratio (g/U)</th>
<th>Insulin Sensitivity (mg/dL per U)</th>
<th>Blood Glucose Target (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Ratio</td>
<td>Time</td>
</tr>
<tr>
<td>0:00</td>
<td>8.0</td>
<td>0:00</td>
</tr>
</tbody>
</table>
Auto Mode Exits

<table>
<thead>
<tr>
<th>Auto Mode Exits</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Calibration</td>
<td>0</td>
</tr>
<tr>
<td>High SG Auto Mode Exit</td>
<td>1</td>
</tr>
<tr>
<td>Auto Mode max delivery</td>
<td>1</td>
</tr>
<tr>
<td>Auto Mode min delivery</td>
<td>0</td>
</tr>
<tr>
<td>BG required for Auto Mode</td>
<td>2</td>
</tr>
<tr>
<td>Sensor Algorithm Underread</td>
<td>0</td>
</tr>
<tr>
<td>Sensor Updating</td>
<td>0</td>
</tr>
<tr>
<td>No SG values</td>
<td>1</td>
</tr>
<tr>
<td>Sensor Expired</td>
<td>0</td>
</tr>
<tr>
<td>Auto Mode disabled by user</td>
<td>0</td>
</tr>
<tr>
<td>Alarms</td>
<td>0</td>
</tr>
<tr>
<td>Pump Suspend by user</td>
<td>0</td>
</tr>
<tr>
<td>Auto Mode Warm Up</td>
<td>0</td>
</tr>
<tr>
<td>Unidentified</td>
<td>1</td>
</tr>
</tbody>
</table>
Hypoglycemic patterns (5)**
1. 1:20 AM - 2:15 AM (1 occurrences)
2. 4:23 AM - 4:48 AM (1 occurrences)
3. 10:45 AM - 11:10 AM (1 occurrences)

Hyperglycemic patterns (3)
4. 5:20 PM - 7:45 PM
5. 12:40 PM - 1:45 PM
6. 9:50 PM - 10:40 PM
Additional Cases

Full reports available online
Please fill out the worksheet
Jane is a 69yoF

- She has type 1 diabetes x 52 years
- Wears Dexcom G5
- A1C=8%, Wt=140lbs, BMI=23
- Current DM regimen:
 - Insulin glargine 14 units daily
 - Insulin aspart ICR: 1:20
 - Correction: 1:50 over 150
Jane’s AGP

Glucose Statistics

<table>
<thead>
<tr>
<th>Glucose Exposure</th>
<th>Avg Glucose mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glucose Ranges</th>
<th>Very Low</th>
<th>Low</th>
<th>In Target Range</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 mg/dL</td>
<td>0.0%</td>
<td>0.8%</td>
<td>70 - 130 mg/dL</td>
<td>49.0%</td>
<td>18.5%</td>
</tr>
</tbody>
</table>

Coefficient of Variation | 36.1%
SD mg/dL | 68
% Time CGM Active | 97.7%
Data Sufficiency | -

CGM
50% - Median
25/75% - IQR
10/90% - Target Range

Curves/peaks represent glucose frequency distributions by time regardless of date.
Top Patterns

1. Jane had a pattern of nighttime highs
 Jane had a pattern of significant highs between 12:00 AM and 12:15 AM.

2. Jane had a pattern of daytime highs
 Jane had a pattern of significant highs between 2:50 PM and 11:05 PM.

3. Jane's best glucose day was November 28, 2019
 Jane's glucose data was in the target range about 96% of the day.
Day by Day

- What would you like to ask Jane?
What to do for Jane?

• Intensify carb ratio, when?
• Change basal insulin?
• Insulin pump or smart pen?
• Referral to diabetes education?
• Referral to dietitian?
Matt is a 44yoM

- He has type 2 diabetes x 3 years
- Other comorbidities: HTN, hyperlipidemia
- A1C=8.4%, BMI=37kg/m²
- Wears Freestyle Libre
- Current DM regimen:
 - Insulin glargine 30 units qpm
 - Metformin 1000mg BID
 - Glimepiride 2g BID
Matt’s AGP

Summary

<table>
<thead>
<tr>
<th>Average Glucose</th>
<th>Time In Range</th>
<th>Coefficient of Variation (CV)</th>
<th>Standard Deviation (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mg/dL</td>
<td>61%</td>
<td>29.4%</td>
<td>58.7 mg/dL</td>
</tr>
<tr>
<td>88-116*</td>
<td>39%</td>
<td>19-25*</td>
<td>10-26*</td>
</tr>
<tr>
<td>In Target Range</td>
<td>70-180 mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 70 mg/dL</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference ranges calculated from population without diabetes.

Ambulatory Glucose Profile

Curves/plots represent glucose frequency distributions by time regardless of date.

- 90%
- 75%
- 50%
- 25%
- 10%
Glucose

Average Glucose

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average GLUCOSE</td>
<td>200 mg/dL</td>
</tr>
<tr>
<td>% above target</td>
<td>61 %</td>
</tr>
<tr>
<td>% in target</td>
<td>39 %</td>
</tr>
<tr>
<td>% below target</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Low Glucose Events

- **Total**: 1
- **Average duration**: 60 Min

Sensor Usage

Sensor Data Captured

- **82 %**

- Daily scans: 9
Day by Day

- What would you like to ask Matt?
What to do for Matt?

• Increase basal?
• Change metformin or glimepiride?
• Referral to diabetes education?
• Referral to dietitian?
• Add on new agents?
3 Pump Cases

• All people with type 1 DM, wearing insulin pumps and CGM
• T:Connect
• Glooko
• Carelink
Cleveland Clinic

Every life deserves world class care.
Extra Slides
Insulin Pump Terminology

• Basal rate - a continuous delivery of insulin, “background” insulin
• Bolus – used for carbohydrate and correction doses
• Insulin-to-carb ratio – how many grams of carbohydrates will be covered by 1 unit of insulin
• Insulin sensitivity factor (aka correction bolus or ISF) – how much 1 unit of insulin is expected to lower glucose
• Target – the goal glucose level used for corrections or reverse correction
• Insulin-on-board (aka active insulin time or IOB) – a pump feature that keeps track of a previous bolus
Common Pump Features

- Bolus calculator
- Temporary basal or temp target
- Insulin-on-board/active insulin feature
- Multiple basal patterns
- Small dose increments
- Integration with CGM
- Extended boluses
Insulin Pump Settings

• Use calculations as a starting point
 - Weight based insulin dosing or convert from current basal/bolus regimen with a 25% reduction
 - Rule of 1800 for sensitivity
 - Rule of 500 for carb ratio
 - Basal/bolus balance 50/50 (will vary based on carb intake)

• Fix fasting first
 - Begin with basal rate testing

• Once basals at goal, focus on bolus settings
Calculations

• Rule of 1800
 - Divide by 49 (TDD)
 - =36.73

• Rule of 500
 - Divide by 49
 - =10.2
Ambulatory Glucose Profile
Time in Range Targets

Table 3—Guidance on targets for assessment of glycemic control for adults with type 1 or type 2 diabetes and older/high-risk individuals

<table>
<thead>
<tr>
<th>Diabetes group</th>
<th>TIR</th>
<th>Target range</th>
<th>% of readings; time per day</th>
<th>Target range</th>
<th>% of readings; time per day</th>
<th>TAR</th>
<th>Target range</th>
<th>% of readings; time per day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>% of readings; time per day</td>
<td></td>
<td>% of readings; time per day</td>
<td></td>
<td></td>
<td>% of readings; time per day</td>
</tr>
<tr>
<td>Type 1*/type 2</td>
<td>>70%</td>
<td>70–180 mg/dL</td>
<td><4%; 16h, 48 min</td>
<td><70 mg/dL</td>
<td><4%</td>
<td><25%</td>
<td>>180 mg/dL</td>
<td><25%</td>
</tr>
<tr>
<td></td>
<td><1%</td>
<td>(3.9–10.0 mmol/L)</td>
<td><1 h</td>
<td>(<3.9 mmol/L)</td>
<td><6 h</td>
<td></td>
<td>(>10.0 mmol/L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><1%</td>
<td></td>
<td><1%</td>
<td><54 mg/dL</td>
<td><5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><15 min</td>
<td></td>
<td>(3.0 mmol/L)</td>
<td></td>
<td><1 h, 12 min</td>
<td></td>
<td>(>13.9 mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Older/high-risk#</td>
<td>>50%</td>
<td>70–180 mg/dL (3.9–10 mmol/L)</td>
<td><1%; 12 h, 24 min</td>
<td><70 mg/dL</td>
<td><10%</td>
<td>>250 mg/dL</td>
<td>(>13.9 mmol/L)</td>
<td></td>
</tr>
<tr>
<td>type 1/type 2</td>
<td></td>
<td></td>
<td></td>
<td>(<3.9 mmol/L)</td>
<td><2 h, 24 min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each incremental 5% increase in TIR is associated with clinically significant benefits for individuals with type 1 or type 2 diabetes (26,27). *For age <25 years, if the A1C goal is 7.5%, set TIR target to approximately 60%. See the section CLINICAL APPLICATION OF TIME IN RANGES FOR ADDITIONAL INFORMATION REGARDING TARGET GOAL SETTING IN PEDIATRIC MANAGEMENT. #See the section OLDER AND/OR HIGH-RISK INDIVIDUALS WITH DIABETES FOR ADDITIONAL INFORMATION REGARDING TARGET GOAL SETTING.