Pancreas Transplant 2018 – Update of Current Indications and Outcomes

March 16, 2018

Jon Odorico, MD, FACS
Professor of Surgery
Division of Transplantation
UW Madison School of Medicine and Public Health

Disclosures

In compliance with the accrediting board policies, the American Diabetes Association requires the following disclosure to the participants:

Name of Presenter: Jon Odorico, MD, FACS

Research Support: JDRF, NIH
Employee: Regenerative Medical Solutions, Inc.
Board Member/Advisory Panel: Regenerative Medical Solutions, Inc.
Stock/Shareholder: Regenerative Medical Solutions, Inc.

Transplant Categories

USA SPK, PAK and PTA Transplants 1/1/1984 – 12/31/2016

- Simultaneous Pancreas Kidney (SPK)
 Chronic kidney disease
- Pancreas After Kidney (PAK, PASPK)
 Prior kidney transplant and satisfactory kidney function
- Pancreas Transplant Alone (PTA)
 Normal kidney function and impaired hypoglycemic awareness and multiple life-threatening hypoglycemic events or persistent problems despite trial of pump/CGM technology
Pancrak Transplant Volume at UW

Center Volume is Associated with Outcomes after Pancreas Transplantation

*annuallized

SPK Patient Survival

USA Primary DD Pancreas Transplants, 1/1/1966 –12/31/2016

SPK Pancreas Graft Function

USA Primary DD Pancreas Transplants, 1/1/1966 –12/31/2016
Candidates for Pancreas Transplantation – Expanding Indications

Classical
- Adults with T1D
- Chronic Kidney Disease / Hypoglycemia unawareness
- No or minimal Cardiac Disease
- BMI <30
- No active infections or cancer
- Few Re-transplants

Current at UW
- Adults with T1D or T2D and Type 3c
- Chronic Kidney Disease / Hypoglycemia unawareness
- Corrected Cardiac Disease
- BMI <35
- Treated Hep C+, HIV+, prior treated malignancies
- Re-transplants

T1D with Hypoglycemia Unawareness

- **Hypoglycemic unawareness**: Frequent acute severe metabolic complications that are incapacitating or life threatening e.g. 911 calls, LOC, seizures, MVA, loss of job, glucagon use, excessive fear, etc.
- Consistent failure of other therapeutic approaches
- Early but progressive diabetic end-organ complications but without kidney disease or proteinuria
- Balance benefits of improving glycemia and downsides of immunosuppression
- Selected T1D non-uremic patients – low risk and high benefit

Prevalence of Hypoglycemia Unawareness

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of patients</th>
<th>Impaired awareness of hypoglycemia (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scotland</td>
<td>302</td>
<td>23</td>
<td>Hepburn et al. (1990)</td>
</tr>
<tr>
<td>Germany</td>
<td>523</td>
<td>25</td>
<td>Mullhauser et al. (1991)</td>
</tr>
<tr>
<td>Denmark</td>
<td>411</td>
<td>27</td>
<td>Pramming et al. (1991)</td>
</tr>
<tr>
<td>USA</td>
<td>628</td>
<td>20</td>
<td>Orchard et al. (1991)</td>
</tr>
</tbody>
</table>

12-month Frequency of Severe HYPOGLYCEMIA Requiring Assistance in Registry and Observational Studies

- 35.4% - U.S. T1D Exchange Registry (2013)
- 31.5% - Eurodiab Prospl Compl Study (2012)
- 36.7% - Danish-English survey (1995)
- 40.5% - Dutch study (2000)
- 46% - UK Hypoglycaemia Study Group in adults with T1D for >15 yrs (2007)

Real-world frequency of SH
- much higher than suggested by clinical trial data
- remains alarmingly high

Incidence of Severe Hypoglycemia

Fig. 2. Incidence of severe hypoglycemia in the U.K. Hypoglycaemia Study (UH).

Glucagon and Epinephrine Response to Hypoglycemia is Blunted in Long-standing T1DM

The Clinical Reality of Hypoglycemia

Courtesy of Bernhard Hering
Measuring Hypoglycemia

- **Clarke Score** – 8 questions assessing exposure to moderate and severe hypoglycemia, and glycemic threshold for symptoms. Score of 4 or more implies impaired awareness.

- **Hypo Score** – based on 4 weeks of glucose readings +/- sx, self-reported episodes over previous year; Score range 0-3000. Median score 143; >1000=severe hypo, 400-1000=moderate hypo.

- **Lability Index (LI)** – based on 4 weeks of glucose records LI (mmol/L²/hwk⁻²) = \[\Sigma (\text{Gluc}_i - \text{Gluc}_0)²/\text{mean Gluc}_0\] - Range 0-1000, median 233; > 433 indicates problematic lability.

- Better discrimination than MAGE.

PTA Pancreas Graft Function

USA Primary DD Pancreas Transplants, 1/1/1966 – 12/31/2014

PTA Transplants at UW by Era: 1997-2001 vs. 2012-2016
Optimal Type 2 DM Patient For Pancreas Transplant

- Insulin-dependent
- Primarily uremic T2DM – PAK or SPK
- Current UNOS Regulations:
 - if fasting C-peptide > 2 ng/ml → BMI ≤ 30 kg/m²
 - if fasting C-peptide < 2 ng/ml → No BMI restriction
- Relatively low insulin requirement <75-100 U/day (i.e., no evidence for severe insulin resistance)
- Avoid morbidly obese recipients with high insulin requirements and metabolic syndrome
- Mild to moderate co-morbidities (minimal to mild cardiovascular disease)

SPK Patient Survival by Diabetes Type

USA Primary DD SPK Transplants 1/1/2010 – 12/31/2016

![SPK Patient Survival by Diabetes Type](image)

SPK Pancreas and Kidney Graft Function by Diabetes Type

USA Primary DD SPK Transplants 1/1/2010 – 12/31/2016

![SPK Pancreas and Kidney Graft Function by Diabetes Type](image)
SPK Outcomes have improved in Patients with Type 2 DM

USA Primary DD: Pancreas Transplants 1/1/1995 – 12/31/2015

Other Categories

- DRIASM — extreme SQ/IM insulin resistance
- Post-gastric bypass insulin-deficient diabetes
- Total pancreatectomy, e.g. chronic pancreatitis, trauma, etc.
- Failed islet transplantation
- T1D assoc. w/ Multiple autoimmune dz syndrome (e.g. lupus, MS, psoriasis)
- Hep C+; HIV+
- Re-transplants

UW
2
2
4
2
5
2
TNTC

The Case for Simultaneous Pancreas Kidney (SPK) Transplantation for Obese T2DM Patients

Talal M Al-Qaoud, Robert R Redfield III, Glen Leverson, Bridget Welch, Jon S Odorico
• Comparing BMI<30 T2DM recipients requiring insulin there was no difference in kidney graft and patient survival; non-statistically significant better pancreas graft survival in the BMI<30 group
• Comparing LDKTx vs. SPK transplant outcomes in obese (>30 BMI) uremic patients there was no significant difference in kidney graft or patient survival
• For selected low cardiac risk, IDDM T2DM uremic patients, an SPK can be a good option without BMI restriction
Advantages of PAK vs. SPK

PAK
- Better kidney?
- Excellent pancreas function
- Avoid dialysis – preemptive kidney transplant possible
- Short kidney and pancreas transplant waiting times
- Prove patient tolerates immunosuppression and surgery

SPK
- Excellent kidney function
- Better pancreas function?
- Single operation
- Lower rejection and immunological graft loss rates
PAK is associated with similar patient survival benefits to SPK Transplants

UNOS/OPTN Analysis

[Graph showing survival data for PAK, PASPK, and SPK transplants.]

Source - UW Transplant Database

What type of kidney has the longest function?

[Graph showing survival rates for different types of kidney transplants over time.]

Kidney Graft Survival from the time of Kidney Transplant

PAK/PASPK vs. SPK

[Graph showing comparison of survival rates.]

Source - UW Transplant Database

Pancreas Graft Survival

PAK/PASPK vs. SPK

[Graph showing comparison of survival rates.]

Source - UW Transplant Database
A pancreas transplant conveys a survival advantage in kidney recipients

Survival Rates in Patients Surviving with Kidney Function at One Year: Influence of PAK

<table>
<thead>
<tr>
<th>12-Month Survivors</th>
<th>n</th>
<th>Unadjusted Kidney Graft Survival (%)</th>
<th>Patient Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPK, P</td>
<td>252</td>
<td>72.4</td>
<td>81.4</td>
</tr>
<tr>
<td>SPK, P (PAK)</td>
<td>119</td>
<td>81.2</td>
<td>87.6</td>
</tr>
<tr>
<td>LD KA</td>
<td>419</td>
<td>75.9</td>
<td>85.6</td>
</tr>
<tr>
<td>LD KA (PAK)</td>
<td>485</td>
<td>83.0</td>
<td>90.6</td>
</tr>
<tr>
<td>DI KA</td>
<td>344</td>
<td>69.1</td>
<td>80.2</td>
</tr>
<tr>
<td>DI KA (PAK)</td>
<td>176</td>
<td>76.0</td>
<td>87.2</td>
</tr>
<tr>
<td>SPK, P+</td>
<td>6486</td>
<td>83.1*</td>
<td>93.6*</td>
</tr>
</tbody>
</table>

After receiving a kidney transplant, is it better for the kidney to remain diabetic or to receive a pancreas transplant?

Very Short Waiting Time

High Transplant Rate – SPK and Solitary Pancreas Transplants

Source – SRTR June 2015 PIR release

Transplant Rate = # pts received a transplant / person-years observed at that program

Source – SRTR June 2015 PIR release
Zero Waiting List Mortality

What sets UW apart?
- Excellent Patient outcomes and satisfaction; short waiting times, very low waiting list mortality
- High center volume
- Specialize in PTA as well as SPK
- Pioneered UW organ preservation solution
- Use of DCD and pediatric donors
- Alemtuzumab use in pancreas transplantation
- No NGTs
- No ICU stay, short LOS
- Pancreatic allograft biopsies – understanding of rejection pathology
- Experienced team dedicated to comprehensive patient care

Comparable outcomes in SPK transplantation – T1DM v. T2DM

After adjusting for risk factors such as obesity, AA, age, PRA, etc. T2DM were not at higher risk.

Better quality kidney and shorter waiting time.