Welcome!
Single and Dual Hormone Closed-loop Glucose Control with Automated Exercise Detection to Prevent Hypoglycemia in Type 1 Diabetes

Control #2017-A-4128-Diabetes

Peter G. Jacobs, PhD
Oregon Health & Science University,
Department of Biomedical Engineering

Jessica Castle, MD1; Joseph El Youssef, MD1,2;
R Reddy2; N Resalat2; D Branigan1; N Preiser2; S Sugerman1; J Leitschuh2; B Senf1

1OHSU, Harold Schnitzer Diabetes Health Center,
2OHSU, Department of Biomedical Engineering
Disclosures

• Peter G. Jacobs and Jessica R. Castle have a financial interest in Pacific Diabetes Technologies Inc., a company that may have a commercial interest in the results of this research and technology.

• Funding for this project has come from NIH/NIDDK 1DP3DK101044-01
Objective

- Objective was to alleviate the risk of exercise-related hypoglycemia in type 1 diabetes (T1D) using automated insulin and glucagon delivery.

- Compare performance across different therapies:
 - OHSU Dual hormone CL + exercise
 - OHSU Single-hormone CL + exercise
 - PLGS
 - Current Care (adjustments allowed)

- Both AP systems used:
 - A wearable heart rate and accelerometer sensor to automatically detect exercise to inform the CL algorithms
 - Dexcom CGM and t:slim pumps
Method: 4-way Randomized Cross-over

<table>
<thead>
<tr>
<th></th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current care</td>
<td></td>
<td>In clinic exercise</td>
<td></td>
<td>Home exercise</td>
<td>In clinic exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLGS</td>
<td></td>
<td>In clinic exercise</td>
<td></td>
<td>Home exercise</td>
<td>In clinic exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin CL</td>
<td></td>
<td>In clinic exercise</td>
<td></td>
<td>Home exercise</td>
<td>In clinic exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin + Glucagon CL</td>
<td></td>
<td>In clinic exercise</td>
<td></td>
<td>Home exercise</td>
<td>In clinic exercise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Current care: patient’s usual regimen

**PLGS: predictive low glucose suspend system

***In clinic exercise: running at 60% of VO2max for 45 min

****Home exercise: exercise of subjects choice for 45 min
Outcomes

• **Primary outcome measures**: % time in hypoglycemia and % time in euglycemia from start of in-clinic exercise to next meal (4 hours)

• **Secondary outcome measures**: total number of rescue carbohydrates given, total insulin and glucagon consumed, % time in hyperglycemia
Results: Glucagon ↓ Hypoglycemia During Exercise

- After exercise, 6.3% time in hypoglycemia (<70 mg/dL) when using insulin only CL system, 1.0% time in hypo when using insulin + glucagon AP (p=0.01)

\[* p<0.05 \]
Results: Closed-loop \uparrow time in range during physically active free living conditions

- Insulin only and insulin + glucagon closed loop systems increased time in euglycemia vs PLGS under 4 days of free-living with high amounts of physical activity

Euglycemia = 70-180 mg/dL
Conclusion

• Automated glucagon delivery reduces exercise-related hypoglycemia compared with single-hormone AP and PLGS

• Wearable activity tracking sensors can be used to automatically detect aerobic exercise and adjust dosing: 85% of exercise events were automatically detected

• Both dual and single hormone APs increased time in euglycemia relative to PLGS

• Glucagon reduced but did not eliminate hypoglycemia. May need to be delivered sooner at exercise onset
EMBARGO POLICY

• All recordings are for personal use only and not for rebroadcast online or in any format.
• Information presented today in this briefing is under embargo until the end of the formal scientific presentation here at the conference.
• Please consult the top of each press release for embargo dates and times.
• Tweeting is not permitted from the news briefing or any sessions. The Association’s social media team will be monitoring all channels.