Management of Hyperglycemia in Type 2 Diabetes

Celeste C. Thomas MD, MS

Disclosures

In compliance with the accrediting board policies, the American Diabetes Association requires the following disclosure to the participants:

Celeste C. Thomas MD, MS

Disclosed no conflict of interest

ADA-EASD Position Statement Update: Management of Hyperglycemia in T2DM, 2015

- PATIENT-CENTERED CARE
- BACKGROUND
 - Epidemiology and health care impact
 - Relationship of glycemic control to outcomes
 - Overview of the pathogenesis of type 2 diabetes
- ANTI-HYPERGLYCEMIC THERAPY
- Glycemic targets
- Therapeutic options
 - Lifestyle
 - Oral agents & non-insulin injectables
 - Insulin

ADA-EASD Position Statement Update: Management of Hyperglycemia in T2DM, 2015

- 3. ANTIHYPERGLYCEMIC THERAPY
 - Implementation Strategies
 - <u>Initial</u> drug therapy
 - Advancing to <u>dual combination</u> therapy
 - Advancing to <u>triple combination</u> therapy
 - Transitions to and titrations of insulin
- 4. OTHER CONSIDERATIONS
 - Age
 - Weight
 - Sex/racial/ethnic/genetic differences
 - Comorbidities (CAD, HF, CKD, Liver disease, Hypoglycemia-prone)
- 5. FUTURE DIRECTIONS / RESEARCH NEEDS

Patient-Centered Approach

"...providing care that is respectful of and responsive to individual patient preferences, needs, and values - ensuring that patient values guide all clinical decisions."

- Gauge patient's preferred level of involvement.
- Explore, where possible, therapeutic choices. Consider using decision aids.
- Shared Decision Making a collaborative process between patient and clinician, using best available evidence and taking into account the patient's preferences and values
- Final decisions regarding lifestyle choices ultimately lie with the patient.

ADA-EASD Position Statement Update: Management of Hyperglycemia in T2DM, 2015

2. BACKGROUND

 Relationship of glycemic control to microvascular and macrovascular outcomes.

Impact of Intensive Therapy for Diabetes: Summary of Major Clinical Trials

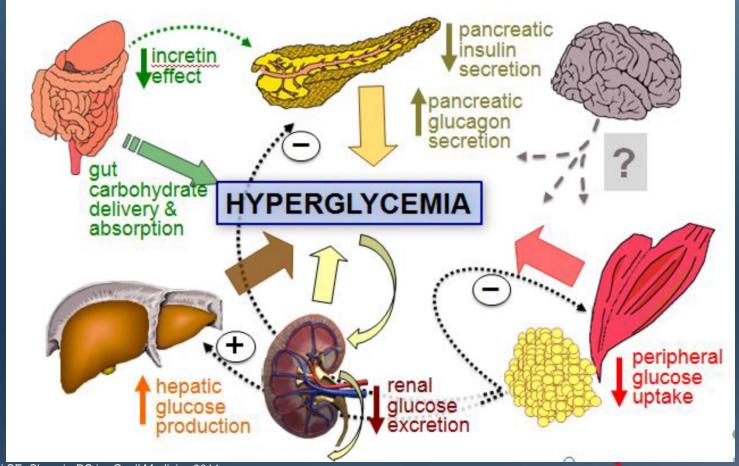
Study	Microvasc		CV	D	Mortality		
UKPDS	4		(+)	<u></u>	⇔ ∪		
DCCT / EDIC*	<u></u>		(=)	<u></u>	(=)	•	
ACCORD	<u></u>		(>	1		
ADVANCE	<u> </u>		(-)		(-)		
VADT	<u> </u>		(->	(-)		

Kendall DM, Bergenstal RM. © International Diabetes Center 2009
UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854.
Holman RR et al. N Engl J Med. 2008;359:1577. DCCT Research Group. N Engl J Med 1993;329;977.
Nathan DM et al. N Engl J Med. 2005;353:2643. Gerstein HC et al. N Engl J Med. 2008;358:2545.
Patel A et al. N Engl J Med 2008;358:2560. Duckworth W et al. N Engl J Med 2009;360:129. (erratum:
Moritz T. N Engl J Med 2009;361:1024) . Writing Group for the DCCT/EDIC Research Group. JAMA. 2015;313(1):45-53.

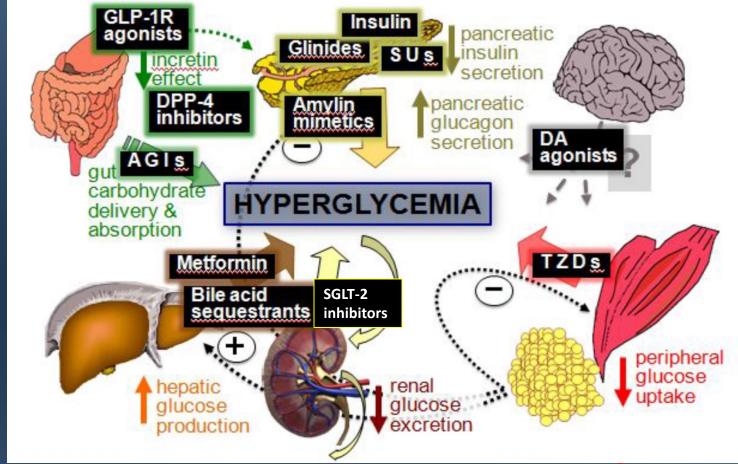
* in T1DM Initial Trial

Long Term Follow-up

American Dishetes A


American Diabetes Association.

ADA-EASD Position Statement Update: Management of Hyperglycemia in T2DM, 2015


2. BACKGROUND

- Overview of the pathogenesis of T2DM
 - Insulin secretory dysfunction
 - Insulin resistance (muscle, fat, liver)
 - Increased endogenous glucose production
 - Decreased incretin effect
 - Deranged adipocyte biology

Multiple, Complex Pathophysiological Abnormalities in T2DM

Multiple, Complex Pathophysiological Abnormalities in T2DM

Glycemic Recommendations for Non-Pregnant Adults with Diabetes: Treatment Should be Individualized

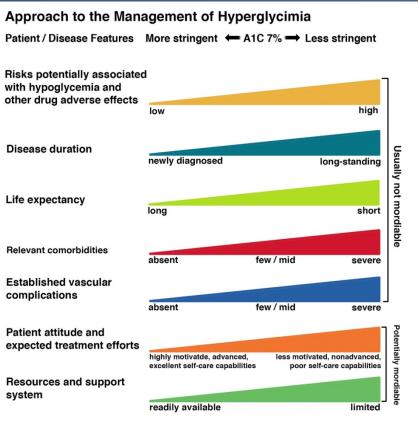
A₁C

• <7.0%^{*}

Preprandial capillary plasma glucose

 80–130 mg/dL* (4.4-7.2 mmol/L)

Peak postprandial capillary plasma glucose[†]


- <180 mg/dL*</p> (<10.0 mmol/L)

Postprandial glucose measurements should be made 1-2 h after the beginning of the meal, generally peak levels in patients with diabetes

^{*} More or less stringent glycemic goals may be appropriate for individual patients. Goals should be individualized based on duration of diabetes, age/life expectancy, comorbid conditions, known CVD or advanced microvascular complications, hypoglycemia unawareness, and individual patient considerations.

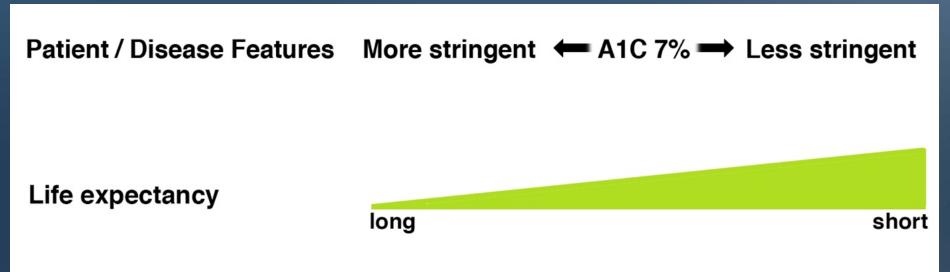
Approach to the Management of Hyperglycemia

Approach to the Management of Hyperglycemia by Patient/Disease Feature – Drug Adverse Effects

Patient / Disease Features More stringent ← A1C 7% → Less stringent

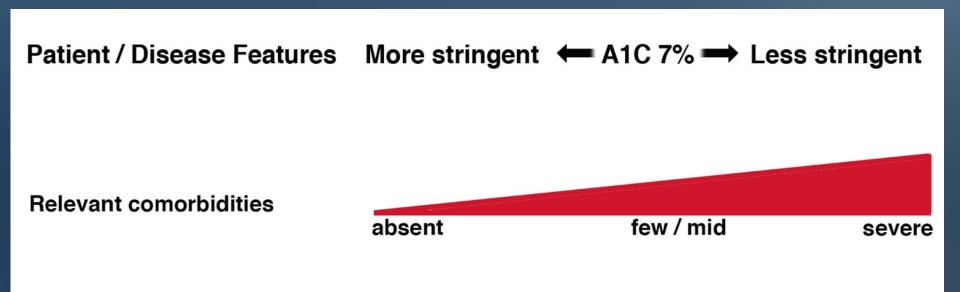
Risks potentially associated with hypoglycemia and other drug adverse effects

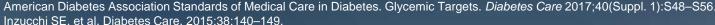
Approach to the Management of Hyperglycemia by Patient/Disease Feature – Disease Duration

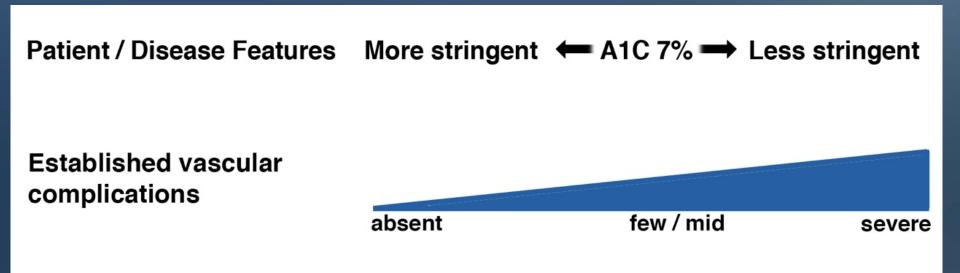

Patient / Disease Features More stringent ← A1C 7% → Less stringent

Disease duration

newly diagnosed long-standing




Approach to the Management of Hyperglycemia by Patient/Disease Feature – Life Expectancy

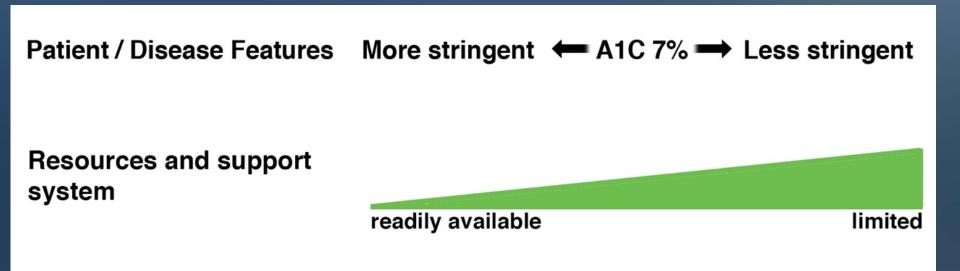

Approach to the Management of Hyperglycemia by Patient/Disease Feature – Relevant Comorbidities

Approach to the Management of Hyperglycemia by Patient/Disease Feature – Established Vascular Complications

Approach to the Management of Hyperglycemia By Patient/Disease Feature – Patient Attitude and Expected Treatment Efforts

Patient / Disease Features

More stringent ← A1C 7% → Less stringent


Patient attitude and expected treatment efforts

highly motivatde, advanced, excellent self-care capabilities

less motivated, nonadvanced, poor self-care capabilities

Approach to the Management of Hyperglycemia by Patient/Disease Feature – Resources and Support System

Lifestyle Management

Lifestyle
management is
a fundamental
aspect of
diabetes care
and includes

- Diabetes self-management education (DSME)
- Diabetes self-management support (DSMS)
- Nutrition therapy
- Physical activity
- Smoking cessation counseling
- Psychosocial care

ADA-EASD Position Statement Update: Anti-Hyperglycemic Therapy in T2DM

Therapeutic options	:
Oral Agents & Non-I	nsulin Injectables

Most Popular in the U.S. And Europe Less Commonly Used

Metformin Meglitinides

Sulfonylureas A-Glucosidase Inhibitors

Thiazolidinediones Colesevelam

DPP-4 Inhibitors Dopamine-2 Agonists

SGLT-2 Inhibitors Amylin Mimetics

GLP-1 Receptor Agonists

American Diabetes Association Standards of Medical Care in Diabetes. Pharmacologic Approaches to Glycemic Treatment . *Diabetes Care* 2017;40(Suppl. 1):S64-S74. Inzucchi SE, et al. Diabetes Care. 2015;38:140–149. Inzucchi SE et al. *Diabetologia* 2015;58(3):429–442. *Diabetes Care* 2012;35:1364–1379. *Diabetologia* 2012;55:1577–1596.

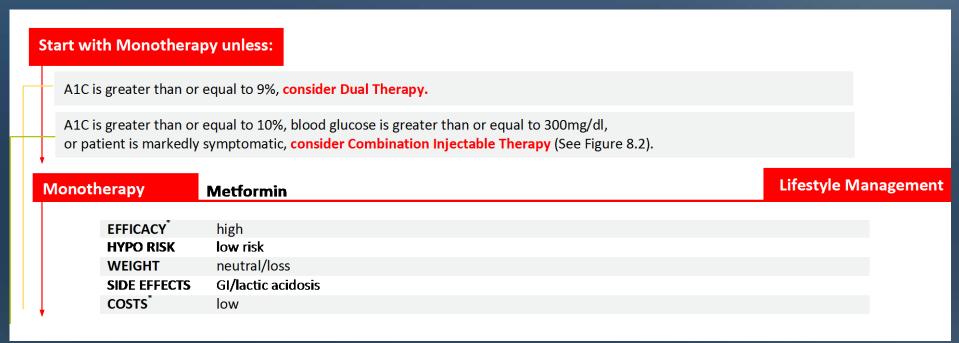
Properties of Anti-Hyperglycemic Agents

Oral Class	Mechanism	Advantages	Disadvantages	Cost
Biguanides	 Activates AMP-kinase (?other) ↓ Hepatic glucose production 	 Extensive experience Rare hypoglycemia ↓ CVD (UKPDS) Relatively higher A1C efficacy 	 Gastrointestinal Vitamin B12 deficiency Lactic acidosis (rare) B-12 deficiency Contraindications eGFR <30 mL/min/1.73m²/acidosis, hypoxia, dehydration, etc. 	Low
Sulfonylureas	 Closes K_{ATP} channels on ß-cell; plasma membranes ↑ Insulin secretion 	 Extensive experience ↓ Microvascular risk Relatively higher A1C efficacy 	Hypoglycemia ↑ Weight	Low
Meglitinides (glinides)	Closes K _{ATP} channels on ß-cell; plasma membranes ↑ Insulin secretion	 ↓ Postprandial glucose excursions Dosing flexibility 	 Hypoglycemia ↑ Weight Frequent dosing schedule	Mod.
TZDs	 PPAR-g activator ↑ Insulin sensitivity 	 Rare hypoglycemia Relatively higher A1C efficacy Durability ↓ TGs (pio) ? ↓ CVD events (pio, PROactive) ↓risk of stroke and I in pts. Without diabetes and with insulion resistance and a history of recent stroke or TIA (IRIS, pio) 	 ↑ Weight Edema/heart failure Bone fractures ↑ LDL-C (rosi) 	Low

Properties of Anti-Hyperglycemic Agents

Oral Class	Mechanism	Advantages	Disadvantages	Cost
A-Glucosidase inhibitors	Inhibits a-glucosidaseSlows intestinal carbohydrate digestion / absorption	 Rare hypoglycemia ↓ post-prandial glucose excursions ↓ CVD events in prediabetes (STOP-NIDDM) Nonsystemic 	 Generally modest A1C efficacy Gastrointestinal side effects Frequent dosing schedule 	Low to Mod.
DPP-4 inhibitors	 Inhibits DPP-4 activity Increases incretin (GLP-1, GIP) concentrations ↑ insulin secretion, ↓ glucagon secretion (glucose dependent) 	Rare hypoglycemia Well tolerated	 Angioedema / urticaria and other immune-mediated dermatological effects ? Acute pancreatitis ? ↑ Heart failure hospitalizations 	High
Bile acid sequestrants	 Bind bile acids in intestinal tract, increasing hepatic bile acide production ? ↓ Hepatic glucose production and ? ↑incretin levels 	Rare hypoglycemia ↓ LDL-C	 Modest ↓ A1C Constipation ↑ TGs May ↓ absorption of other medications 	High
Dopamine-2 Agonists	 Activates DA receptor Modulates hypothalamic regulation of metabolism ↑ insulin sensitivity 	Rare hypoglyemia? ↓ CVD events	 Modest ↓ A1C efficacy Dizziness/syncope Nausea Fatigue Rhinitis 	High
SGLT2 inhibitors	Inhibits SGLT2 in proximal nephron Blocks glucose reabsorption by the kidney, increasing glucosuria	Rare hypoglycemia ↓ Weight ↓ BP Associated with lower CVD event rate and mortality in patients with CVD	GU infections Polyuria Volume depletion/hypotension/dizziness ↑ LDL-C ↑Cr (transient) DKA, urinary tract infections leading to urosepsis, pyelonephritis	High

American Diabetes Association Standards of Medical Care in Diabetes. Pharmacologic Approaches to Glycemic Treatment. *Diabetes Care* 2017;40(Suppl. 1):S64-S74. *Diabetes Care* 2015;38:140-149; *Diabetologia* 2015;10.1077/s00125-014-3460-0


Properties of Anti-Hyperglycemic Agents

Injectable Class	Mechanism	Advantages	Disadvantages	Cost
GLP-1 receptor agonists	 Activates GLP-1 R ↑ Insulin ,↓ glucagon (glucose dependent), ↓ gastric emptying ↑ satiety 	 Rare hypoglycemia ↓ Weight ↓ Postprandial glucose excursions ↓ Some CV risk factors Associated with lower CV event rate and mortality in patients with CVD 	 Gastrointestinal side effects Theart rate Route pancreatitis C-cell hyperplasia/medullary thyroid tumors in animals Injectable Training requirements 	High
Amylin mimetics	 Activates amylin receptors 	 ↓ Postprandial glucose ↓ Weight 	 Modest ↓ A1C Gastrointestinal side effects Injectable Hypo if insulin dose not reduced Frequent dosing schedule Training requirements 	High
Insulin	 Activates insulin receptor ↑ glucose disposal ↓ hepatic glucose production Suppresses ketogenesis 	 Nearly universal response Theoretically unlimited efficacy 	 Hypoglycemia Weight gain Training requirements Patient and Provider reluctance Injectable (except inhalable) Pulmonary toxicity (inhaled insulin) 	High (cost is based on lowest- priced member of the class)

American Diabetes Association Standards of Medical Care in Diabetes. Pharmacologic Approaches to Glycemic Treatment. *Diabetes Care* 2017;40(Suppl. 1):S64-S74. *Diabetes Care* 2015;38:140-149; *Diabetologia* 2015;10.1077/s00125-014-3460-0

Anti-Hyperglycemic Therapy in T2DM: General Recommendations

Anti-Hyperglycemic Therapy in T2DM: Dual Therapy

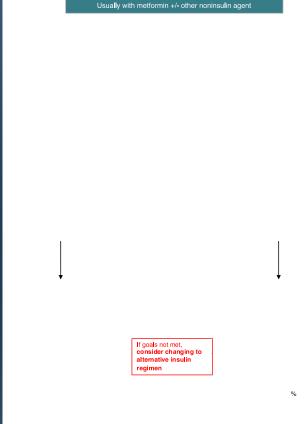
Dual Therapy	Metforr	nin +				Lifestyle Management	
	Sulfonylurea +	Thiazolidinedione +	DPP-4 inhibitor +	SGLT2 inhibitor +	GLP-1 receptor agonist +	Insulin (basal)	
EFFICACY*	high	high	intermediate	intermediate	high	highest	
HYPO RISK	moderate risk	low risk	low risk	low risk	low risk	high risk	
WEIGHT	gain	gain	neutral	loss	loss	gain	
SIDE EFFECTS	hypoglycemia	edema, HF, fxs	rare	GU, dehydration, fxs	GI	hypoglycemia	
COSTS [*]	low	low	high	high	high	high	

If A1C target not achieved after approximately 3 months of monotherapy, proceed to 3-drug combination (order not meant to denote any specific preference – choice dependent on a variety of patient - & disease-specific factors):

Anti-Hyperglycemic Therapy in T2DM: Triple Therapy

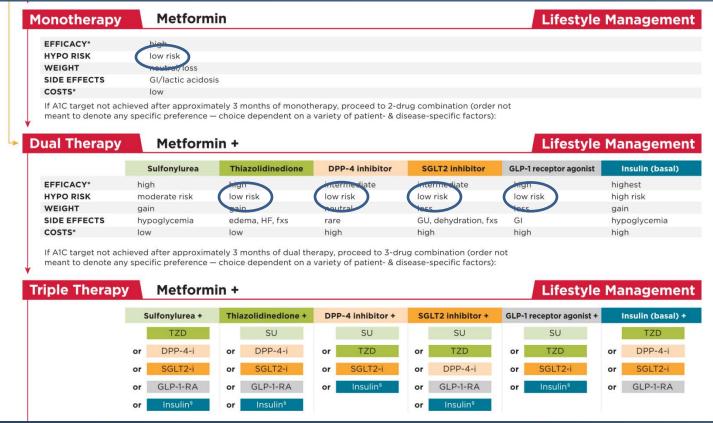
Triple Therapy Metformin + Lifestyle Management											
S	ulfonylurea +	- T	hiazolidinedione +	DPF	P-4 inhibitor +	SGL	Γ2 inhibitor +	GLP-	1 receptor agonist +	I	nsulin (basal) +
	TZD		SU		SU		SU		SU		TZD
or	DPP-4-i	or	DPP-4-i	or	TZD	or	TZD	or	TZD	or	DPP-4-i
or	SGLT2-i	or	SGLT2-i	or	SGLT2-i	or	DPP-4-i	or	SGLT2-i	or	SGLT2-i
or	GLP-1-RA	or	GLP-1-RA	or	Insulin	or	GLP-1-RA	or	Insulin	or	GLP-1-RA
or	Insulin	or	Insulin			or	Insulin				

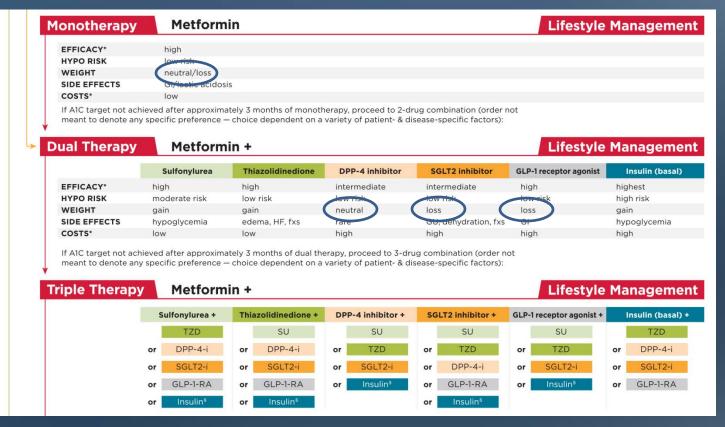
If A1C target not achieved after approximately 3 months of triple therapy and patient (1) on oral combination, move to basal insulin or GLP-1 RA, (2) on GLP-1 RA, add basal insulin, or (3) on optimally titrated basal insulin, add GLP-1 RA or mealtime insulin. Metformin therapy should be maintained, while other agents may be discontinued on an individual basis to avoid unnecessarily complex or costly regimens (i.e., adding a fourth antihyperglycemic agent).


Combination Injectable Therapy

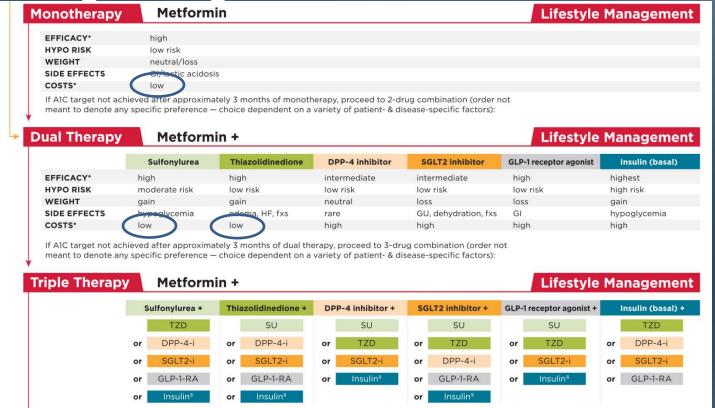
(See Figure 8.2)

Combination Injectable Therapy For Type 2 Diabetes


Initiate Basal Insulin



Choosing an Agent to Avoid Hypoglycemia


Inzucchi SE, et al. Diabetes Care, 2015;38:140-149.

Choosing an Agent to Avoid Weight Gain

Choosing an Agent to Avoid to Minimize Cost

Therapeutic Options: Insulins

Human Insulins

Neutral protamine Hagedorn (NPH)

Regular human insulin

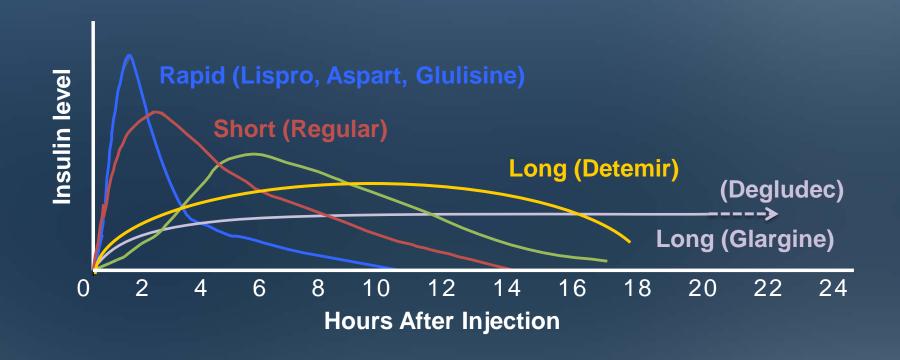
Pre-mixed formulations

Insulin Analogues

Basal analogues (glargine, detemir, degludec)

Rapid analogues (lispro, aspart, glulisine)

Pre-mixed formulations


Biosimilar Insulin

Basaglar
(a biosimilar
version of
insulin
glargine);
long-acting

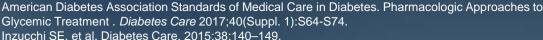
Anti-Hyperglycemic Therapy: Insulins

Approach to Starting and Adjusting Insulin in T2DM

Initiate Basal Insulin

Usually with metformin +/- other noninsulin agent

Start: 10 U/day or 0.1-0.2 U/kg/day


Adjust: 10-15% or 2-4 units once or twice weekly to reach FBG target

For hypo: Determine & address cause; if no clear reason for hypo,

↓ dose by 4 units or 10-20%

If A1C not controlled, consider combination injectable therapy

Approach to Starting and Adjusting Insulin in T2DM

Add 1 rapid-acting insulin injection before largest meal

Start: 4 units, 0.1 U/kg, or 10% basal dose. If A1C <8%, consider ↓ basal by same amount

Adjust: ↑ dose by 1-2 units or 10-15% once or twice weekly until SMBG target reached

For hypo: Determine and address cause: if no clear reason for hypo, ↓ corresponding dose by 2-4 units or 10-20%

If A1C not controlled, advance to basal-bolus

Add GLP-1 RA

If not tolerated or A1C target not reached, change to 2 injection insulin regimen

If goals not met, consider changing to alternative insulin regimen Change to premixed insulin twice daily (before breakfast and supper)

Start: Divide current basal dose into AM, 1/3 AM or 1/2 AM, 1/2 PM

Adjust: ↑ dose by 1-2 units or 10-15% once or twice weekly until SMBG target reached

For hypo: Determine and address cause: if no clear reason for hypo, ↓ corresponding dose by 2-4 units or 10-20%

If A1C not controlled, advance to 3rd injection

Approach to Starting and Adjusting Insulin in T2DM

Add ≥2 rapid-acting insulin injections before meals ('basal-bolus')

Start: 4 units, 0.1 U/kg, or 10% basal dose/meal. If A1C <8%, consider ↓ basal by same amount

Adjust: ↑ dose(s) by 1-2 units or 10-15% once or twice weekly to achieve SMBG target

For hypo: Determine and address cause: if no clear reason for hypo, ↓ corresponding dose by 2-4 units or 10-20%

If goals not met, consider changing to alternative insulin regimen Change to premixed analog insulin 3 times daily (breakfast, lunch and dinner)

Start: Add additional injection before lunch

Adjust: ↑ dose by 1-2 units or 10-15% once or twice weekly until SMBG target reached

For hypo: Determine and address cause: if no clear reason for hypo, ↓ corresponding dose by 2-4 units or 10-20%

Adapted from:

American Diabetes Association Standards of Medical Care in Diabetes. Pharmacologic Approaches to Glycemic Treatment. *Diabetes Care* 2017;40(Suppl. 1):S64-S74. Inzucchi SE, et al. Diabetes Care, 2015;38:140–149.

Other Considerations in Designing an Optimal Glucose Lowering Drug Regimen for Patients

Age

Weight

Sex / racial / ethnic / genetic differences

Comorbidities

- Coronary artery disease
- Heart Failure
- Chronic kidney disease

- Liver dysfunction
- Hypoglycemia-prone

Identifying and addressing barriers to medication adherence

- Cost
- Side effects

Diabetes Care 2012;35:1364-1379; Diabetologia 2012;55:1577-1596.

Adapted from:

American Diabetes Association Standards of Medical Care in Diabetes. Pharmacologic Approaches to Glycemic Treatment . *Diabetes Care* 2017;40(Suppl. 1):S64-S74. Inzucchi SE, et al. Diabetes Care. 2015;38:140–149.

Future Directions/Research Needs

Comparative effectiveness research

Focus on important clinical outcomes

Contributions of genomic research

Perpetual need for clinical judgment!

Key Points

Glycemic targets & BG-lowering therapies must be <u>individualized</u>, based on a variety of patient and disease characteristics.

Diet, exercise, & education: foundation of any T2DM therapy program

Unless contraindicated, metformin remains the optimal first-line drug.

- After metformin, data are limited. <u>Combination therapy</u> with 1-2 other oral / injectable agents is reasonable. Try to minimize side effects.
- Ultimately, many patients will require <u>insulin</u> therapy alone or in combination with other agents to maintain BG control.
- All treatment decisions should be made in conjunction with the <u>patient</u> (focusing on his or her preferences, needs & values.)

Comprehensive CV risk reduction - a major focus of therapy

Case Study: Introduction

- Mrs. G, a 58-year-old African American female, has had type 2 diabetes for 8 years
- She is currently being treated for hypertension (12 years) and dyslipidemia (10 years)
- She is concerned about her uncontrolled blood glucose level, a recent increase in weight (5 lbs)
- She is a non-smoker and only occasionally consumes alcohol
- Walks 15-20 minutes, three times a week
- Her diet has improved over the last 5 years after consultation with a registered dietitian, but she admits to having a "sweet tooth"

(Continued...)

Case Study (cont'd)

Physical exam:

- General examination normal, No pallor, cyanosis, clubbing or lymphadenopathy
- Height, 5'2" (157 cm); weight, 152 lbs (69 kg)
- BMI, 27.8 kg/m²
- BP, 132/86 mmHg
- Pulse 80/min, regular, peripheral pulses well felt
- Systemic examination- normal
- Foot examination is normal
- Fundus examination :Grade I non proliferative diabetic retinopathy
- Medication history: Glimepiride 2 mg daily BID Metformin sustained release preparations 1000 mg daily Telmisartan 40 mg daily Atorvastatin 10 mg at night Aspirin 75 mg at night

(Continued...)

Case Study (cont'd)

• Lab results (recent):

A1C	8%
FPG	130 mg/dL
2-hour postprandial (dinner)	252 mg/dL
Total cholesterol	197 mg/dL
HDL-C	35 mg/dL
LDL-C	101 mg/dL
TG	147 mg/dL
Blood Urea Nitrogen	19 mg/dL
Creatinine	1.3 mg/dL
Urine routine	Sugar, ketones, negative

Case Study: Discussion Question

From the lab results, which plasma glucose patterns of hyperglycemia are present?

- A. Fasting
- B. Preprandial
- C. Postprandial
- D. Nocturnal
- E. B and C above

Case Study: Discussion Question

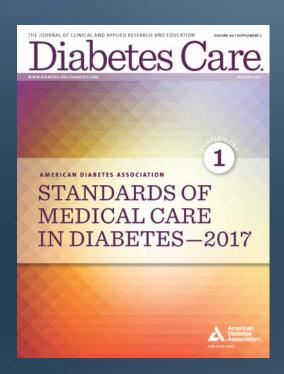
A drug from which of the following drug classes could you consider to intensify Mrs. G's treatment to manage her postprandial hyperglycemia?

- A. GLP-1 receptor agonist
- B. DPP-4 inhibitor
- C. SGLT2 inhibitor
- D. Basal insulin
- E. A, B, C, or D above

Case Study: Think-Pair-Share

 Do you agree with introducing a GLP-1 receptor agonist to Mrs. G's treatment plan?

Is there another option you would have tried first?


 Would you discontinue the sulfonylurea or add the GLP-1 receptor agonist to the metformin/sulfonylurea?

Helpful Resources

Guidelines

- Full version
- Abridged version for PCPs
- Free app
- Pocket cards with key figures
- Free webcast for continuing education credit

Professional.Diabetes.org/SOC

Professional Education

- Live programs
- Online self-assessment programs
- Online webcasts

Professional.Diabetes.org/CE

Diabetes Self-Management Education

- Find a recognized Diabetes
 Self-Management program
- Become a recognized DSME program
- Tools and resources for DSME programs
- Online education documentation tools

Professional.Diabetes.org/ERP

Professional Membership

- Journals
- Meeting, book and journal discounts
- Career center
- Quarterly member newsletter

Professional.Diabetes.org/membership

Thank You!